Crystal Structure of β -Ga₂O₃

S. GELLER

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

(Received March 23, 1960)

The crystal structure of β -Ga₂O₈ has been determined from single-crystal three-dimensional x-ray diffraction data. The monoclinic crystal has cell dimensions $a = 12.23 \pm 0.02$, $b = 3.04 \pm$ 0.01, $c=5.80\pm0.01$ A and $\beta=103.7\pm0.3^{\circ}$ as originally reported by Kohn, Katz, and Broder [Am. Mineral. 42, 398 (1957)]. There are 4 Ga₂O₃ in the unit cell. The most probable space group to which the crystal belongs is $C_{2h}^3 - C2/m$; the atoms are in five sets of special positions $4i: (000, \frac{1}{2}, 0) \pm (x0z)$. There are two kinds of coordination for Ga³⁺ ions in this structure, namely tetrahedral and octahedral. Average interionic distances are: tetrahedral Ga-O, 1.83 A; octahedral Ga-O, 2.00 A; tetrahedron edge O-O, 3.02 A; and octahedron edge O-O, 2.84 A. Because of the reduced coordination of half of the metal ions, the density of β -Ga₂O₃ is lower than that of α -Ga₂O₃ which has the α -corundum structure. Also the closest approach of two Ga³⁺ ions in β-Ga₂O₃ is 3.04 A which is considerably larger than the closest approach of metal ions in the sesquioxides with the α -corundum-type structure and, in agreement with the results of thermodynamic meas-

INTRODUCTION

UCH attention has recently been given the sesquioxides of the 3d elements particularly in regard to their magnetic nature. Several of these have the α -Al₂O₃ (α -corundum) structure.¹ Crystals of α -Al₂O₃ doped with small amounts of magnetic ions are not only of scientific interest but have important application as MASER materials. Trivalent gallium with $3d^{10}$ configuration is nonmagnetic and therefore a Ga₂O₃ crystal doped with a magnetic ion is also of scientific and possibly technological interest.

In these Laboratories paramagnetic-resonance studies by Peter and Schawlow² on Cr³⁺-ion-doped β-Ga₂O₃ crystals prepared by Remeika³ indicated that the Cr³⁺ ions had replaced Ga³⁺ ions in crystallographically equivalent octahedral sites. If the Cr3+ ions had entered crystallographically nonequivalent octahedral sites, this certainly would have been detected. On the other hand, it would not have been simple to detect tetrahedrally coordinated Cr3+ ions.

Since Kohn, Katz, and Broder had shown⁴ that the unit cell of β -Ga₂O₃ contained 8 Ga³⁺ ions, then, as will be shown in detail later, these ions must be in at least two sets of crystallographically nonequivalent positions. Because there seemed little reason to expect the Cr³⁺

urements, the β phase appears to be the structurally more stat one.

The average Ga-O distances in the structure seem to accou for the fact that although the Ga3+ ion is substantially larg than the Al³⁺ ion its quantitative preference for tetrahedrally c ordinated sites when substituted for Fe3+ ion in the iron garne is very nearly the same as that of the Al³⁺ ion.

The structure accounts for a recent result obtained by Pet and Schawlow from paramagnetic-resonance measurements Cr^{3+} -ion-doped β -Ga₂O₃, namely that the Cr^{3+} ion substitutes (the Ga³⁺ ions in a single set of equivalent octahedral sites.

The magnetic aspects of the β -Ga₂O₃ structure are discussed an it is shown that a possible Fe₂O₃ isomorph could be expected to at least antiferromagnetic with a Néel temperature of about 700° Furthermore, a knowledge of the \$-Ga2O3 structure and of t nature of site preferences of the Ga³⁺ and Fe³⁺ ions in the game lead to a prediction regarding the structure of the ferrimagnet crystals of formula Ga2-xFexO3 recently discovered by Remeika

ions to prefer one set of octahedral sites to another an because the Cr³⁺ ion shows an exclusive preference for octahedral coordination, (see, for example, footnot references 5-7) it appeared reasonable to speculate the the Ga³⁺ ions had two types of coordination in Ga₂O₃. If this speculation proved sound, we would hav the first clear-cut case in which a pure sesquioxic contained octahedrally and tetrahedrally coordinate metal ions in the same structure.

With the present interest in the 3d transition-met. oxides, it would seem worthwhile to determine th structures of any of those yet unknown. (Indeed the now appears to be good reason to refine known structure of these oxides to provide needed accuracy for theoret cal considerations.) Such knowledge could be importar to our understanding of the crystal chemistry of th ions involved. For example, the Fe3+ and Ga3+ ions wit spherical electronic configurations 3d5 and 3d10, re spectively, have both octahedral and tetrahedr. coordination in the garnets $\{Y_3\}$ [Fe₂](Fe₃)O₁₂ an {Y₃}[Ga₂](Ga₃)O₁₂ and in solid solutions of one these in the other.⁵ Both the Ga³⁺ and Al³⁺ ions a smaller than the Fe³⁺ ion, but the Ga³⁺ is substantial larger than the Al3+ ion.8 Yet when these ions are sul stituted for the Fe3+ ion in the garnets they show ver nearly the same quantitative preference for tetrahedr sites.^{5,9} The present investigation appears to clarif this observation.

The structure of β -Ga₂O₃ also accounts for its beir

 ⁶ M. A. Gilleo and S. Geller, Phys. Rev. 110, 73 (1958).
⁶ S. Geller, J. Appl. Phys. 31, 30S (1960).
⁷ S. Geller, C. E. Miller, and R. G. Treuting, Acta Cryst. 1 179 (1960).

S. Geller, J. Phys. Chem. Solids (to be published).

676

¹ R. W. G. Wyckoff, Crystal Structures, Vol. II (Interscience Publishers Inc., New York). See also Z. Krist., Strukturbericht 1, 240 (1931); L. Pauling and S. B. Hendricks, J. Am. Chem. Soc. 47, 721 (1925). W. H. Zacharizara, Z. Krist., Strukturbericht 1, 240 (1931); L. Pauling and S. B. Hendricks, J. Am. Chem. Soc. 47, 781 (1925); W. H. Zachariasen, Z. Krist., Strukturbericht 2, 310 (1937).

² M. Peter and A. L. Schawlow, Bull. Am. Phys. Soc. Ser. II, 5, 158 (1960).

³ J. P. Remeika, J. Appl. Phys. **31**, 263S (1960); See also Con-ference on Magnetism and Magnetic Materials, Detroit, Michigan,

November, 1959, Paper No. S4. ⁴ J. A. Kohn, G. Katz, and J. D. Broder, Am. Mineral. 42, 398 (1957).

⁸S. Geller, Acta Cryst. 10, 248 (1957).